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Abstract

*The dynamic instability characteristics of a

laminated composite panel subjected to a transverse load is

studied in this research. Up to cubic variations in the

thickness coordinate are included in the inplane

I displacement field, and only the constant component is kept

in the transverse displacement. The transverse shear

strains retain only linear displacement terms and vary

parabolically through the thickness vanishing at the top and

bottom surfaces. The complete quadratic displacement func-

I tions are included in the inplane strains to characterize

-- the large displacements/rotations response during a snapping

process. A 36 degree of freedom shell element is used to

-- obtain numerical results.

The static snap through load versus dis-

i placement curve, as well as the critical collapse load, is

first examined by invoking the Riks technique along with the

Newton-Raphson iteration scheme at each load increment

level. The beta-m time marching integration method is then

employed to evaluate a dynamic response. Two step loads,

*with the step magnitude slightly below and above the

critical collapse load, are introduced in the dynamic

analysis. Moreover, the damping effect is incorporated to

iix
ix
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I

yield a steady-state solution. The response resulting from

the dynamic steady-state analysis subjected to a step load

matches the displacement on the snap through load versus

*displacement curve.

Ix
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3 FINITE ELEMENT INVESTIGATION INTO THE DYNAMIC INSTABILITY

CHARACTERISTICS OF LAMINATED COMPOSITE PANELSI
I

I I. INTRODUCTION

I
Laminated composite materials are seeing widespread use

I in many diverse industries. One of these is the aerospace

industry where, due to the need to minimize weight, complex

shell configurations are common structural elements.

I Structural components made from composite materials

typically have higher strength and stiffness to weight

I ratios than those made from isotropic materials. In

addition, composite materials' properties can be tailored to

meet specific design goals. Increased stiffness and

strength are designed only where needed. However, optimized

structural systems are often more susceptible to

i instabilities such as buckling, collapse, or vibration,

especially if the composite is a thin shell and the load is

applied in the transverse direction. The purpose of this

I 1-1

I
I



!
i research is to investigate numerically the static and

dynamic response of a laminated graphite/epoxy composite

cylindrical shell (curved panel) subjected to transverse

* loading.

3 Analytical Method

The computer program SHELL was used exclusively in this

research. It was originally developed by Dennis (9) for

3 large displacement/rotation static analysis of shell

structures. The modified Riks-Wempner solution algorithm

3 was added to the program by Tsai and Palazotto (26) and it

was extended for the study of non-linear vibrations of

i cylindrical shells also by Tsai and Palazotto (14). The

i uniqueness of the SHELL program is that parabolic shear

strains are assumed to vary through the shell thickness and

3 vanish at the top and bottom surface. Although classical

plate and shell theory for thin isotropic structures ignore

I shear stress through the thickness, it is not appropriate to

do so with composite shells. The coupling of extensional,

bending, and shear strain must be taken into consideration.

3 It also should be noted that the SHELL program

incorporates material linearity. This is appropriate

i because in structural applications, materials are normally

restricted to the linear elastic region. This implies that

any fiber or ply breakage during large rotations and

i 1-2
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-- displacements is ignored.

SHELL offers two strain displacement formulation

options for a cylindrical shell finite element. When Dennis

3 originally wrote the code, he incorporated the Donnell shell

equations along with the non-linear equations he developed

U in order for comparisons to be made. Only Dennis' non-

linear option is used in this research.

IThe analytical approach taken in this work is to use

3both the static and dynamic analytical capabilities of SHELL
to do collapse analysis of circular shells and arches

subjected to transverse loading. Comparisons to other work

is done when applicable. In the interest of semantics, it

should be noted that the terms buckling, collapse, and snap-

through are all used interchangeably.

I Previous Work

The engineering analysis of general shells goes back no

U further than the start of the twentieth century. Simmons

(24) notes that in 1920, A. E. Love published a set of

equations for the midsurface displacement of circular,

3 cylindrical thin shells. Perhaps the first useful

cylindrical shell equations were presented by Donnell (10)

3 in 1933. He determined (both analytically and

experimentally) that circumferentially trigonometric

deformations with small wavelengths allow one to discard

1 1-3
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U several terms in the curvature and twist equations. The

complexity of the resulting expressions are on the order of

the Von Karman plate equations. The primary restriction is

3 that the ratio of shell thickness must be small and if

rotations of the midsurface greater than fifteen degrees

occur then accuracy suffers.

Another major milestone in shell theory occurred in

31959 by Sanders (22). He assumed that transverse shear

i strains are negligible and solved for the corresponding

transverse shear stress resultants, thus partially

incorporating transverse effects. The significant

improvement over Love's approximations is that by

considering rotation of the shell normal, but neglecting

i rotations about this normal, Sanders' relations allow for

small strain free rigid body motion.

Since finite element analysis came into being for use

in structural analysis, many researchers have developed

i finite elements for cylindrical shells. Most applicable to

the present research is the work done by Saber and Lock

(21), which employed a solution algorithm capable of tracing

3 the post-collapse behavior by incrementing either load or

displacement to avoid numerical singularity at critical

3 points. A 20 degree of freedom curved rectangular element

for an isotropic material was used. Most theoretical work

done up until this point in time involved isotropic

1 1-4
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materials. With the advent of composites, it was necessary

to extend first-order theory to laminated materials. Chung

and Widera (4) expanded Donnell's equations for use with

laminated composites. It should be noted that the limits of

the applicability of the theory as far as magnitude of

I deformations are concerned remained the same.

All work reported up to this point is considered first-

I order theory. The development of a higher order theory

Ui incorporating transverse effects was driven by the need to

accurately analyze laminated composite shells which

typically have more severe transverse stresses. Dennis (8)

and Reddy and Liu (17) have both presented comparable higher

I order theories incorporating transverse effects, of which

Dennis' is the basis for the present work. This theory

allows for fully non-linear in-plane strains, but only

linear transverse shear strain-displacement relations. The

acceptability of a linear transverse strain field in a non-

t linear theory is justified by noting that transverse effects

are small compared to in-plane effects, thus smaller higher-

order terms of the already small transverse terms are

3 negligible (9).

The solution method for geometrically non-linear

problems by the finite element method requires recalculation

of the structure's stiffness matrix as it changes during

deformation. The Newton-Raphson method for iteration is

1 1-5
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3 widely used in such computations. However, once the

structure has reached its peak load, it has essentially zero

stiffness and inverting the stiffness matrix as required for

1 load-controlled Newton-Raphson iteration to converge to the

equilibrium solution is impossible. This problem has been

circumvented by reformulating the equilibrium equations to

step by displacement rather than load when a peak load was

encountered, and using the usual load incrementing method to

i step through areas of zero or reversing incremental

displacement. A solution algorithm without the need to swap

between methods was developed by Riks (18,19) and Wemper

(27) and applied to structural problems by Crisfield (7).

i In it, a selected arc length of the equilibrium path is

incremented rather than load or displacement. Since step

size does not decrease to zero due to convergence to a peak

5 load or peak displacement point as the former methods do,

this technique steps past such singular areas and allows

U uninterrupted tracing of the equilibrium path (15). Tsai

i and Palazotto (14) have applied this solution algorithm to

the SHELL computer code used in this research.

3 Although a great deal of research has been done into

the static analysis of shell structures, the development of

U the finite element method for nonlinear shell dynamic

analysis has not been as rapid. Clough and Wilson (5) have

done work into nonlinear vibrations using flat plate

i 1-6
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3 elements. The higher order transverse shear deformation

theory used in this research has been extended for the study

I of nonlinear vibration of cylindrical shells by Tsai and

1 Palazotto (26).

3 Current Work

The subject of this research is the dynamic response to

£ a transverse point load of a laminated cylindrical shell and

tarch. The static and dynamic analysis capabilities of the
SHELL computer code are further explored. Both dynamic and

I static analysis of the post buckling response of cylindrical

shells are compared. No experiment or comparable numerical

i study could be found with which to compare results; hence

trends and general conclusions will be compared with

conclusions in some of the studies referenced above. The

3 computers used were an Elxsi 6400 using the Unix operating

system located at the Air Force Institute of Technology and

3 a Cray Y-MP8/864 running Unicos located at the Ohio

5 Supercomputer Center, the Ohio State University.

1

I
3
i 1-7
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II. THEORY

In order for the reader to better understand the

theoretical basis for the data presented later, the finite

element formulations governing the SHELL computer code is

now discussed. The geometry and assumptions used in the

model will be presented along with the constitutive

development, the strain-displacement relations and the

potential energy theory used to develop the equations of

motion. The resulting 36 DOF element will be presented.

Finally, the extension of the code to dynamic analysis by

Tsai and Palazotto (14) will be discussed.

Bathe and Ho (2) stated the following set of criteria

for a desirable shell element:

1.) No spurious zero-energy modes should exist, so

that reliable results can always be expected. No

numerical fudge factors should be necessary,

either.

2.) The element should be applicable to general shell

structures, including those with beam stiffeners,

cutouts, intersections, etc.

3.) The element should be cost-effective for linear as

well as nonlinear static and dynamic analysis.

This implies that the degrees of freedom is held

to a minimum. It should allow analysis of large

2-1



displacement and large rotation problems, and

materially nonlinear situations.

! Criterion 1 is achieved in this formulation. The code has

£ not been developed beyond the research stage, so application

to other than plate and cylindrical shell cases modeled with

3] rectangular elements is not yet possible. However, the

underlying theory by which transverse shear is incorporated

is not restricted geometrically, so criterion 2 is somewhat

g met. Material linearity is assumed in the formulation of

the element, so criterion 3 is only partially fulfilled.

-- The incorporation of through the thickness shear effects in

a shell structure, while maintaining a two dimensional

analysis, satisfies the first part of this criterion.

Geometry and Assumptions

3 The curvilinear orthogonal coordinate system and

nomenclature used in this formulation of the laminated

3 cylindrical shell is shown in Fig (2-1). The x-axis lies

along the straight dimension of the panel; the s-axis

follows the circumference, and the z-axis is everywhere

3 normal to the shell middle surface, positive toward the

center of curvature. The surface formed by the x and s axes

3 lies in the center of the thickness of the panel, so the

thickness coordinate is negative on the outer surface and

positive on the inner surface. Displacements along the x,s

1 2-2
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Figure 2-1. Cylindrical Shell Geometry

and z axes are u, v and w respectively. In the early

vectorial development, the coordinate 0 is used instead of s

Ifor the purpose of generality and s is used when

specializing to the cylindrical geometry. Since the

structure analyzed here is an open shell, the angle 0 is

also useful for describing shallowness. The angle 0

specifies the orientation angle of each ply in the laminate.

3 Subscripts denoting stress and strain orientation are

explained in Table 2-1 and Fig (2-2).

1 2-3
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* Table 2-1. SHELL Contracted Notation

ISTRESS STRAIN CYLINDRICAL

IEXPLICIT CONTRACTED EXPLICIT CONTRACTEDCORIAE

a03af 336C3Z 3

a03C42i 3-f 23 4s-z- 4

a 13C 313 E5  - 5

3 02a6 c1" 12 66 x-s- 6

22(2)

Figure 2-2. Fiber Reinforced LaminaI Definitions

3 2-4
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3 Constitutive Development

In this section the stress-strain relations for a

Ilaminate of arbitrarily oriented transversely isotropic
3plies will be developed. The main difference from isotropic

relations is the summation over the lamina thickness of the

3 directional constitutive equations for each ply, arriving at

the total laminate's effective stress-strain relation. This

£ section follows the references by Silva (23) and Dennis (8).

g For an isotropic material, stress a and strain c are

related as

I a = Ee (2-1)

I
where E is Young's modulus. When considering the general

3• case of an anisotropic material, Young's modulus can differ

with different load orientations so this equation expands to

1 C11  012 01 3 014 15 16' 1

i02 21 2 2 C23 024 C25 26 e2

03 31 0 32 033 34 35 036 e3 (2-2)

04 041 04 2 043 C44 045 046 4

015 S 51 052 S3 054 55 6 e56U06 061 06 2 06 3 064 065 66) F6

3 where C1 j is the stiffness matrix of 36 terms defining the

stress-strain relationship for loading in the ith direction.i
If one only considers the energy conserving elastic region,

-- 2-5
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3 the matrix Cij is symmetric; i.e. C12 = C21 and so forth,

resulting in 21 independent terms. In the case of a

directional fiber-reinforced composite material (the

material in this research), the three mutually orthogonal

planes of symmetry decouple shear strains from normal

stresses and vice versa. This defines an orthotropic

material, which has only 9 independent stiffnesses.

101 11 C12 13 0 0 0 1

2 C12 C22 C23 0 0 0 2I3 C 13 23 33 0 0 0 3 (2-3)

04 0 0 0@4 0 0 C

0 s  0 0 0 0 C55 0 e5

1 06 0 00 0 0 C6 6 F6

Also, since such a material responds equally to any

direction of load in the plane perpendicular to the fiber

I longitudinal axis (2-3 plane), the 2 and 3 subscripts are

interchangeable. This behavior is called transverse

isotropy and further reduces the number of independent

stiffness terms to seven. Thus, in terms of engineering

constants E (Young's modulus) and v (Poisson's ratio) the

Ifollowing are the stiffness terms:

2-6
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1 -V23
A

l-v1 2
C22 =C33 =E 2  A

C12 =C13 =EIV21 A (2-4)

C V 2 3 +V 1 2 "; 2 1C23 =E2  A

C44 =G23

C5 =G31

C66 G12

where A = l-2v12v 21-v 23 2-2v 12v 21v 23, El is Young's modulus for

loads along the 1 axis, G12 is the shear modulus in the 1-2

plane, and v12 denotes the ratio of strains e2161 for stress

applied in the 1 direction.

Due to the fact that in most composite materials the

plies are thin, the assumptions of plane stress (a3 = 4=C5=0)

is usually made at this point. However, in the SHELL code,

non-zero through the thickness shear stress is allowed, thus

a "modified" state of plane stress is assumed in which only

a3=0. Solving for e3 in Eq (2-3) after applying this

assumption yields

e 3  3 2c1 3 (2-5)

3 3 3

2-7



I
3 Applying the modified plane stress assumption to Eq

(2-3), using the relation of Eq (2-5), and rearranging terms

I produces the lamina constitutive relation

I C)11 Q1 2 0 0 0 0 1'
02 Q1 2 Q 2 2 0 0 0 0 e23496 = 0 0 -66 0 0 0 'e6  (2-6)

04 0 0 0 Q44 0 0 4

[ 05 0 0 0 0 Q55 0 5

where the Qjj are reduced stiffness coefficients related to

the C's by

Qij -ij- C3Cj3(2-7)

!C C33

In terms of engineering coefficients,

Q 1  ElQ2=_2Q2=V 2 1 E2
G) (A (A (2-8)

3 Q66 =G 1 2 Q4 4 =G 23 Q5 5 =G1 3

I where ( = 1- V12 V21.

3 Finally, in order to analyze a stack of plies, they

must all be referenceI to a global axis system and their

I effects summed:

I {oi)k=T] [Oij ] k [T] T {Ci}k (2-9)

1 2-83
U



3 where

3 F2 S 2 -2 cs1F 0 2 1
[T] = S 2 C2  2cs for 12 Q22

CS -cs c2-s2 0 0 Q66.

LS CJ 0 055]

and c=cos(§), s=sin(§). With this transformation the

constitutive relations are

3 i)k = [Oii]k {eilk (2-10)

i with the transformed reduced stiffnesses

iQ11 = Q11cos 4 § + 2 (Q12 + 2Q66 ) sin 2 §cos 2 § + Q2 2sin 4 §

Q12 = (Q11 + Q22 - 4Q66 ) sin2 §cOs 2 § + Q12(sin4§ + cOs 4§)

Q22 = Q11 s i n 4 § + 2 (Q12 + 2Q66 ) sin2 §cOs 2$ + Q22 cOs 4§

IQ16 = (Q11 - Q12 - 2Q66) sin~cos 3 § + (Q12 -Q2 + 2Q66) sin31'cOs§

Q6 = (Q11 - Q12 - 2Q66)sin 3§cOs§ + (Q12 -Q2 + 2Q66)sin§cOs 3§

Q6= (Q11 + Q22 -2Q1 2 - 2Q66)sin 2 cOs 2 + Q(sin 4 § + cos 4§)

Q44 = Q44cos 2§ + Q55 sin2 §

Q45= (Q44 - Q55)cos~sin§

I Q55= Q55cos2§ + Q44sin2 §

i
3 2-9
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5 Strain Displacement Relations

The strain versus displacement relations in the SHELL

l code take into account the geometric nonlinearity arising

-- from the panel's curvature. It is also within these

relations that through the thickness shear effects are

3 incorporated into the analysis. This development follows

Dennis (8) who authored the original code.

l_ The incorporation of transverse shear effects is

* accomplished by assuming a modified state of plane stress

for the laminar (previously discussed) in which a3=0 (and

3 hence c3=0) but a 4 and 05 are allowed to be small non-zero

values. These transverse shear stresses are assumed to

i equal zero on the top and bottom surfaces of the shell, and

the associated strains will vary parabolically through the

shell thickness.

3- To start, one looks at the fully non-linear strain-

displacement relations for an orthogonal curvilinear

U coordinate system taken from Saada (20) and presented below.

aul hu 2 ah +hu ah,
hay, h2 ay2  h3 Oy3

+ (__ul u+ __H h
_ + a h l

~~_ aU ah 3 (2-11)
2 ay1 h 2 ay2 h3 ay3

au2 u_ h 1 au h
+!( 1) 2 )+1 (3_ 2U2 ay, h2 a 2 ~ 2 ay, h3 8Y3~

1 2-10

I )
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f2 h2 U2 + h2 U3 'ah2 +h 2Ul ah 2

,a~h3 ay3  h, ay,

I U + _H2 ~ 3 h 2 +Ul ah) 2  (-12)
2 a3y 2 h3 ay3 h, a3y,

3 a u3 -_H u 20h2 2 1 aUl _H2h

2 v2-h3)Y 2- a2 2)2(3y

ay ,ay, h2 ay2 ~y

_8u3 + u1 h3 +h 3 2 13)
2 ay3 h, ay1l h2 

0y2

+ 1 (_U -3 Uah3 ) 2+aIh3) 2 -(2-13)

12 (3y3 h 1ay1, 2 ayv h (Y

12 1(h - 1Ul+h2 - - 2 _ 2l ahl

21 au2 aul _ y ah

'2 2ay 2  hd 2 ay , 2 ay 2 3O( -4

+I ' 2U ah u (U 2 a(h2 U3 h
+ 1 aU3 U2 al) U3 2 h2

2 ay, Y hay3 ay1 a2 h3  ay3 '

(2-14



I

mm y13= 1 Ou-3h hl 3  )
2 aylh l (OUl ay 3 h U OY h+ +l ul _u_3ah3 aU1 + U3ah, +U2ahl)

2 -y3 h, ay, ay( h3 ay3 h2 OY2I (2-15)
+ au3 - U1 ) au3+ uH 2h3 + )ah(

2 ay1 h3 y3  (3y3 h, ay, h 2  y 2

+ l(OU 2  1 h) (U 2  U3 Oh3
2 ay1  h2 072  ay3 h2 OY2

1232 (3 0y-3 2 2 -U2 012 U3 M-
2 1 ( Y2 1O3 O3 a2
au2 u3 Oh3  au 2 u3 h2 u Oh2

2 - y3 h2 Oy 2  ay2 h3 ay3 h, ay,
+ -(2-16)I ~ ~ ~ ~ ~~~ +i~L~~ _03U H, 11
2 ay2 h 3 Oy 3  

3y 3 h 2 ay2 h, ay

+ 1 aul U2 ah2  au _H3 Oh31 2 Oy2 h y) (ay 3-h, ay)

3 The uVs are the displacements in the 1,2,and 3 directions

respectively and the y,'s are the generalized coordinates in

the 1,2, and 3 directions. The expressions for e.j are

5obtained by dividing the yij by the product of the

coordinate system scale factors hih,. It is important to

3 keep in mind the contracted notation discussed in Table 2-1.

As stated earlier c3 is assumed to be zero and only the

linear terms are kept for the transverse shear strains c4

3 and i. Thus we see that (8):

m
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U

e4 -- [u 31 2 + h 2u3 ?3 - u 2 h 2 3 ]
i (2-17)

= 1 [u31 1 + hiu1, - uh 1 3 ] ( )
Y 1

* where the coordinate system scale factors for the

cylindrical geometry used in this work are h1=l, h2=l- z/R,

and h3=l.

3 The displacement equations in the thickness variable z

which permit the incorporation of the desired through the

thickness features are (8):

u(x,O,z) = u° + z*i1 + Z24 + z 3 y1 + z 491

V(x,O, z)= Vo[1-.Z]Z +z '2k+Z3Y 2+Z402 (2-18)

I
w(x,O)= 

w

where u0, v0 wI *i I, yi, and e, are functions of the

U coordinates x and 0. The displacements u° and v° are of the

5- shell middle surface. The transverse displacement w is the

same throughout the thickness since transverse normal strain

3 is assumed negligible. The #j terms are rotations of the

surface normals in the x and s planes, and Pi, y1 , and e,

Iare to be found by applying the assumptions that transverse
3 shear stresses a4 and a5 are zero in the shell surfaces.

Substituting the equations for v and w into Eq (2-17) for c 4

yields (8):
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C4= - W' 2+(1- Z) -V+ *2 + 2Z'02+ 3 Z2 Y2+ 4 Z3@2)
--- i -- R1 (2-19)

+ zl(w12+(l R R *2 * Z 2  3 2 y+Z 2
R(

For zero transverse shear stress at the surfaces, the

3 associated strain will also be zero. Enforcing this

condition by substituting ±h/2 for z in Eq (2-19) and

Isetting both resulting expressions to zero and hence equal
t.7 each other, one obtains by then solving for the unknown

variables the following (8):

C= 0
i 02 _Y2

2R (2-20)

1_h 21 43 - -3hi (*2 + w, 2)

U Note that an h/R value of 1/5 (quite high for practical

3aerospace shell geometries) allows for the neglection of the
h/R term in the left side of Eq (2-20). Replacing 02, e2

3 and Y2 in Eq (2-19) with the results in Eq (2-20) one can

find the transverse shear strain c4 in terms of transverse

displacement w and rotation *2 (8):

C4- 1-z/R (w'2 + *2) 1- 4-E! + .- (2-21)

2-14
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It should be noted that there are 1/R terms to be neglected.

Therefore, the transverse shear strain-displacement

relations, c4, along with a similar analysis with 65

(simpler since h, = 1) , become (8) :

e4 -_/I (w, 2 + *2)(1- 4 (2-22a)

3 5 = (w, 1 + *)(1- 4 Z2) (2-22b)

By replacing 02 , e2 and Y2 in Eq (2-18) it is found that the

displacement equations are (8):

u(x,O,z) = u+ z+p1 - 4z3(* + W, 1)3h 3

3v(xO'z) = V0 [iz]+ Zip2 - 4-! Z3 (i 2 + W, 2) (2-23)

w(xO) = w

At this point, one can note that this formulation provides

seven degrees of freedom: u; v; w; w, 1 ; w, 2 ; #1 and 12"

Now that the displacement equations which incorporate a

parabolic through the thickness shear stress distribution

have been developed, the in-plane kinematic equations are

derived for the shell middle surface. The fully general

2-15
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strain displacement relations are quite extensive; the

theoretical development incorporating them can be found in

Dennis' large displacement - moderate rotation general shell

development (8). The general strain displacement relations

of Eq (2-11) and (2-16) with the kinematics of Eq (2-23)

will give the inplane shell strain displacement relations.

These expressions can be specialized for a shell geometry of

interest by defining the scale factors, hi, using Eq (2-24)

(8).

hi = a,(1 - z/Rj)

h2 = a2(l - z/R2) (2-24)

h3 = 1

3 where Y2 = gyy (no sum), which are called the metric

coefficients for the orthogonal curvilinear coordinate

system.

By substituting Eq (2-24) into Eq (2-11) - (2-16) and

carrying out the indicated differentiation, one obtains for

the inplane strain-displacement equations (8):
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Yl 11 - a0 z zx
hi +h 33 4 (2-25a)

-- 722 - ZXI0 + z'x1 + Z6X1

e2 2 2 - 2

h2 (2-25b)

3X+ z'x2+ z6X

2y1 1 -3.r€ - h1h 2 -e 6 + z X 6 + z2X (2-25c)

+ Z33+ Z44+ Z6XI

- where the e and the Xji terms (j=1,2,6; i=1,2,3,4,6) are

functions of the displacements and the scale factors, and

I can be found in Appendix A of (8). It is noted that the

superscripts on the xj' are not exponents. They are

individual strain components that correspond to the power of

3 z that multiplies it, and the subscripts on Xj' indicate the

strain, El, e2, or C6 that these components correspond with.

The following equivalent representation of the strains

-- is conducive to the matrix operations of the potential

energy formulation in the next section. The inplane strain

-- displacement relations are represented by (8):
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I
I 0

el = el + zPXjV ; (p=l,.7)

where (2-26a)
0 1 u v, + w,)
1= U, 1  1 +U

e2 = e2 + ZP 2, ; (p1,. .,7)

where

O= w +I (u, 2v, 2+W,2+ ) (2-26b)e2 =v, 2 -_ R 2 2 2 2  R 2 R 2

+ VW, 2  V, 2W

R RI
e6 = e+ ZPX6P ; (p=1, . .,7)

where

e6 = U, 2 + V, 1+ U, 1U, 2 + V 1IV 2 + W,1W,2  (2-26c)

+ (vw, 1 - v, 1w)UR

Note: The higher order bending strain-displacement

relations, Xip (i=1,2,6; p=l,..,7), are completely shown in

(8).

I The transverse shear strains (in similar form) are (8):

0
C4 = W, 2

4= 4+ ZPX4P ; X42 = 3k(w, 2 + *2) (227a)
iX4p (p=1, 3, 4,5, 6,7) =0

1 2-18
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I ,° = w,+

e5 = e°+ ZPX5 P ; X52 = 3k(w,l + *1) (2-27b)
X5P(P=1,3,4,5,6,7) =0

This allows assembly of the strain displacement equations

into a matrix format:

z
ro z

X12 X13 X14 X1 5 X16 X17 3
21L2. X2 1 X22 X23 X24 X25 X26 X27 'Z

X61 X152 X63 X64 X65 X66 X67 z 1 (2-28)

t = to + [X421]

3 In a general expression,

39 } = {o} + [X]{Z} (2-29)

It is worth noting that these kinematics avoid the

common pitfall of shear locking, wherein the model becomes

artificially stiff as the shell thickness is decreased.

This is a problem with finite element formulations which

incorporate constant or linearly distributed shear strain

through the thickness, and it necessitates the use of a

correction factor. However, examination of the

compatibility relations associated with the strain
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displacement equations developed in this section shows that

the terms associated with transverse shear drop out as

thickness is reduced to zero (8).

Note the kinematics developed in this section are

specifically for the cylindrical geometry. The analysis

accomplished for this work uses these large displacement -

moderate rotation formulations.

Potential Energy

The shell potential energy is the sum of the internal

strain energy and the work done by external forces:

rp = E +W (2-30)

where the internal strain energy is given by

E =d -31)

where n represents the shell middle surface. The internal

strain energy E is composed of in-plane and normal terms

(set Ej) and transverse shear terms (set E). Expanding the

expression for E by inserting Eqs (2-27) through (2-29) into

Eq (2-31) gives
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I ~~ ~ ~ J E 1 .f U~~+Pi, 2 2 ('620+zPX2p)

+ 20 (e zX 1P) (e+z-X2 ,)

+ Q66(e6"+zPX6 ) 2 (2-32)

U+ 2 1 (e' + zPX P) (eO + z 'X6

U+ 2 26 (e2'+ZPX2 p) (e~o+zrX 6 ,)] dz dQ

3E 2 -faf [ 4 4 4X 4 2
2

+ Q- (e° zPX 52)2 (2-33)

+ 2 45 (e°+Z2x 42 ) (eO+z2X5 2 )] dz dO

where p,r=l,2,...,7. Integrating the z over ± h/2 yields

the equation for strain energy as a function of the middle

surface only, which is the desired formulation for this

problem. A further simplification performed in the

development of the SHELL program is one of symmetry in ply

layup. This results in the cancellation of elasticity

I arrays which are multiplied by odd powers of the transverse

coordinate z. Rearranging yields the final forms of

E= -1f (') [A] ( 01 dQ (2-34)

2
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E2  : {2 ZO)T[A ] {fa} + 2{t 0) [D] [XI (2-35)

+ [X] T [F] [XI) d2-

where stiffness matrices ([A,D,F]) = h IQ] (1 2, z4 ) dz.U
The 36 DOF Element

The SHELL computer code uses a 36 DOF element

developed by Dennis (8) and r *tured in Fig (2-3). The

seven degrees of freedom at each corner node were found in

3 the previous section to be u, v, w, w,1 , w, 2, yI and Y2. The

mid-side nodes have only the two inplane degrees of freedom

I u and v. C' continuity is required of all but w and its

derivatives which require CI continuity. Lagrangian

bilinear interpolation is used for u, v, y1 and Y2 and non

conforming Hermitian interpolation is used for w, w,1 and

W, 2 .

II
I
I

I
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I U sil

Figure 2-3. SHELL 36 Degree of Freedom Element

The assumed transverse displacement equation for the

cylindrical shell element is

w(x,s)=al + a2x + a3s + a 4x 2 +a 5 xs + a6s 2 + a7X 3 + ax 2s
+ a9xs 2 + a1 0 s 3 + a11x3s + a 12xs 3  (2-36)I

This rectangular element may be isoparametrically scaled and

oriented such that the longitudinal coordinate x t , the

circumferential coordinate s -4 ", and the side lengths are

scaled by

_S ( 2 -3 7 )
a b

I
i 2-23
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* where a and b are the scaled element half dimensions in the

E and n directions respectively. Now the element transverse

displacement equation can be written as:I]I
W(xS) [X1 X2 X3 X4] q(238)

I [q41

I
where {q)kT= (W W,1 W,2 ) for the kth corner node, and the Xi's

i are Hermitian shape functions (6):

8

kE.k& +1k 1,1 (2-39)

8

H The formulations for DOF's u, v and *j is a simple

Lagrangian form, and the midside nodes 5-8 are also

included:

41
Q 1 0 0 0 . .. Q4 0 0 0 Q5 . eQ8 q 2

U q
v 0 QJ 0 0 ... 0 Q4 0 0 0 ... 0 q

1 0 0 N 1 0 ... 0 0 N4 0 0 q/2 o 0 0 0 N ... 0 o o N4 o . o q6
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where (q)kT=(u V *1 *2) for nodes 1 through 4 and (u v) for

nodes 5 through 8, and N and Q are linear and quadratic

(respectively) Lagrangian shape functions (6):

Nk = 1 (1+tk&) (l+10)

k=1,2,3,4 (2-40)

Qk = 1 (1 _2) (1+ kl ) , k=6,8

Qk= 1 (l-112 ) (l+k&) , k=5,7

I2
The overall equation defining the isoparametric

discretization of continuum displacements into nodal

displacements is obtained by merging the above

relationships:

Jul = 'N (2-41)
(7xl) (7x36) (36xI)

U

Static Finite Element Solution

The solution to the static finite element problem

involves finding the equilibrium state between applied load

and structural response. This state can be determined by

finding where the variation of the system potential energy

is zero. Recall Eq (2-30):
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ri JJ E +W (2-30)
I

3 where now internal strain energy can be represented by

E = 1qT K+1 +-N2 q = qT Fq (2-42)

3
where q is a column array of nodal displacements, K

3 includes the constant stiffness terms, Ni includes the

stiffness terms linear in displacement and N2 includes the

terms quadratic in displacement. The external work can be

1m represented as

W = _qT I p (2-43)

3 where P is a column vector of applied nodal loads and I is a

multiplier which will be discussed in the next section on

i the static solution algorithm. Equilibrium is defined as

i the state at which internal strain energy and external work

balance, thus potential energy will be at a relative

Iminimum. This point can be found by substituting Eqs (2-42)

and (2-43) into Eq (2-30) and taking the first variation:

61P = 8qT [K q- 1p] = 0 (2-44)

U
Since displacements 6q are nonzero for all but the trivial

- 2-26
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solution, the bracketed expression must be zero for

equilibrium. It is a function (called f) of q and 1:

q - 1p = 0 =f(q,X) (2-45)

3 Since K varies with load and displacement, a numerical

iterative solution is used to solve Eq (2-45) incorporating

5 the Newton-Raphson method.

Static Solution Algorithm

For static analysis, the SHELL code uses the solution

technique advanced by Riks (18,19) and Wempner (27) and

demonstrated by Crisfield (7) of incrementing a desired arc

length along the load-displacement curve while solving

iteratively via the Newton-Raphson method. Called the

modified Riks-Wempner method, and added to the SHELL code by

Tsai and Palazotto (26), this allows for tracing of the load

i displacement response through both load reversing (snap

through) and displacement reversing (snap back) critical

points, so the most complex behavior can be continuously

followed.

IThe essence of the Riks-Wempner method is that

neither load P nor displacement q is independently

controlled; rather a selected "arc" length As (actually the

chord) of the load-displacement curve is incremented. The

equilibrium condition is found which satisfies the relation:

2-27
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Aqi 1 . Aqi1 + A&, 1 P'P = AS 2  (2-46)

where A,+, is the incremental displacement for step i+l, and

AXi+1 is the fraction of load P applied at step i+l. The

effect of the constraint equation (2-46) is that each

subsequent step solution is searched for on an arc of radius

As from the current solution. The initial value for the

quantity Al is specified with the problem input data.

To apply the Newton-Raphson method, the first

variation of Eq (2-45) is taken and applied at step i:

KT 8 q = 6A1 P - f(q, A ) (2-47)

where

aqi = 6qi1 + 68X6qi 2  (2-47a)

the out-of-balance term is

8%,= -K f(qi,Li) (2-47b)

the linear term is

6q 2 = K 1 P (2-47C)

and
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I

KT = [K + N + N2] (2-47d)

I
The following briefly describes the operation of the

I algorithm on load step n, i denotes an iteration at step n

along the solution pdth, and Fig 2-4 provides a simplified

illustration of the algorithm.

a.) The tangentstiffness matrixK at the current

deformed geometry is determined.

3 b.) The linear incremental displacement 6i2 is

computed (Eq 2-47c).

c.) The first iteration computes Aq = AX6i2, with

A51= ln.1, or a user defined value if n=l (first

increment). The parameter Al indicates the

* fraction of total load to be applied at the first

increment.

d.) The constraint equation (2-46) is solved for As.

* The load term is often ignored in this relation,

since the load and displacement values typically

5 differ by many orders of magnitude, which can

cause numerical difficulty. Convergence to a

solution is not hindered by ignoring load at

* this step.

e.) KT is updated at q = q + Aqj.

3 f.) The out-of-balance displacement 60 is computed

(Eq 2-47b).
I 2-29
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U

I P 8I

AS

_8A 1 6q 12IAqi ,q 1

I n Aqij+1

Figure 2-4. Riks Method Solution Step

I

g.) Eqs (2-47a) in (2-46) are solved for 6)l, which

i will have two roots 610 and 61 Q due to the

3 quadratic feature.

h.) 61i is selected from 61,1 and 61 2 , by criteria

3 detailed in Crisfield (7), to ensure that the

solution path does not return to equilibrium

I points previously obtained.

i.) Displacement increment Aq,+1 = Aqi+6qi and load

factor increment Ali+, = Ali+61 i are updated.
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I

V j.) When Aq and AX, computed on successive iteration

(steps e-i) differ by less than a selected

convergence tolerance, the step n solution has

3 been found:

SAq i - Aq,

Ali -. Ax" 
(2-48)

At the completion of each step, cumulative displacement

3 and load factors are computed:

q. = qn-i + Aq, (2-49)

Xn = In-1 + Aln

5 This technique can follow an equilibrium path which

progresses in any direction, by solving for negative

1 incremental displacement or load, or both. This allows one

to automatically solve for even the most convoluted

I nonlinear equilibrium curve, without concern for the

3 singularities at critical load or displacement points.

The efficiency of the algorithm is improved by scaling

the step (n+l)'s target As length by the ratio of a user

selected desired number of iterations to the number of

I iterations to converge to step n. Thus, in near-linear

parts of the load displacement curve, wide spacing of

solution points is allowed; when the curve rounds corners
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(around limit points) the method has to iterate more to

converge and hence As is reduced until the curve straightens

out again.

The inability to solve for equilibrium at a limit load

point (as occurs in other techniques) is circumvented due to

the nature of the stepping method. The technique shoots a

tangent from the current equilibrium point, then searches an

arc about the tip for the next solution point, so the exact

limit load point is almost always skipped over. Auxiliary

equations can be programmed to enable a more exact

determination of the critical point (18).

Dynamic Equations of Motion

Tsai and Palazotto (14) have extended the SHELL code

for the study of nonlinear vibration in cylindrical shells.

5 The equations of motion for the cylindrical shell are

derived via Hamilton's principal where the variation in the

I time integral of total energy is set to zero:

3 8 f? (E-T-We) = 0 (2-50)

II

where E is the potential strain energy, T is the kinetic

energy and We is the work of the external forces.

The variational components 6E, 6T, and 6W. for a

laminated plate or shell are given by:
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L
8E= f JU {1, ek + C(k) k)aU(k)

+ --k)- (k)} d d

and

LI 8T =~ f E fk {(k)V(k),3Vgk)} j Q(-2k= k vj oj ddC )  (2-52)
k= Ck-1

and

8We = f Fj8uj d (2-53)

where i,j=1,2,3, Ck- and Ck are positions at the bottom and

top surface of the k-th layer, n is the domain of the
neutral surface, a (k), ME (k) pj(k), 6u(k), vj(k), p(k), c(k),are

stress tensor, virtual strain tensor, body force vector,

virtual displacement vector, velocity vector, mass density,

damping coefficient for the k-th layer, and Fj is the

external force vector respectively, L is the total number of

layers in a laminated shell.

From Eq (2-50), the finite element formulation is

derived:

M3( 2) + CU (1) + K(U(°))U (° ) = F(t) (2-54)
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where K is the stiffness matrix for large

displacement/rotation of cylindrical shells which was

derived earlier and presented again in slightly different

form:

K1 (~
0 ~ +K (U(0O))

K(U(O) = KO + 2 + 2 (2-55)

i where U(°), U( ), U(2) are the displacement, velocity, and

acceleration vectors at each nodal point, KO is a constant

stiffness matrix, Ki is a stiffness matrix related to linear

3 displacement, K2 is a stiffness matrix related to quadratic

displacement, and P(t) is the external load applied at each

Inode. The consistent mass matrix is obtained as described
in reference (14) by substituting Eq (2-41) into Eq (2-52)

M=f fC p-k
p [N E[R] [R] [N] dCdQ (2-56)

a
where [N] is the overall matrix of shape functions described

in Eqs (2-39) and (2-40) and [R] is a matrix containing

coordinate system scale factors as shown below:

1 0 0 k 0 kQ+C 0

[R] = 0 i 0 0 kC3  0 kC3+(

0 1 0 0 0 0

34



I

where k = -4/3h2, h is the shell thickness, R is the radius

of the shell and C is the position along the z axis or the

Isurface normal. The damping matrix is obtained in a similar

manner.

LIC = f/j'_ c(k [N) T [R] T [R] [N d~d, (2-57)

Solution Technique for Dynamic Problems

To solve the nonlinear dynamic problem SHELL uses the

beta-m method which is a generalization of Newmark's time

marching integration scheme. It provides a general single

step algorithm applicable to initial value problems and is

specialized by specifying the method order m along with m

integration parameters, J0,1il2,m... P-1 - or a particular

choice of m, the integration parameters provide a subfamily

of methods which control accuracy and stability. The finite

difference scheme is not required in this method. This

provides a better way for computer programming than the

regular methods such as Newmark's method. The beta-m method

is defined by

= qk + bkAU m) (2-58)
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3 where

qk= rM Un()h'-k (2-59)

(j-k)

I. and

p=m-k (2-60)

bk - (m-k) !

-- and k=0,1,...,m, Pm is defined to be equal one, and h is the

time increment for each time step. The method order mI
implies that Un(m) is the highest derivative to be retained

3(m=2 is Newmaik). For this research m=2 for all analysis.

Also, throughout this work, 80-j.5, 01=0.5 and 81=1.0 as

I suggested by Yitona and ZienKiewicz (12) for an

unconditionally stable analysis. Substituting Eq (2-58)

5into Eq (2-54) at time t,1, results in

3 [b2M+ b1 C+ boK(qo+ AU(m))] AU(M)= (2-61)

PnIl - {Mq 2 + C, 1 + K(qo+ b 0AU I"m))q0}

where P+1 is the applied load at time tn 1 , b0 ,bl,b 2 , are

scalers dependent on the integration parameters as shown in

Eq (2-60), and q0 ,ql,q 2 are history vectors known at time t,

gas shown in Eq (2-59). Eq (2-61) results in a set of

nonlinear algebraic equations. The Newton-Raphson iterative
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method is adopted here to solve Eq (2-61). At each time

step the following assumption is made

M) u(M) + 8U(m) (2-62)AUj(+1 = U + u

i where i is the iteration number. Applying the Newton-

Raphson method to Eq (2-61) and using Eq (2-62) yields

[b2M+ b1 C+ boKT(qo+ boA Uim)] 6U =
bU Mq2+ b n C b (2-63)

- K(qo+ b0A-Ci{ b }

where KT is the updated tangential stiffness matrix.

Eq (2-63) is then solved by the following algorithm:
1.) Given Un(0 ), Un( I ) , . ... ,Un( m) , at time tn, the solution

at time t 1 is desired.

2.) q0,q, . .....qm, are calculated from Eq (2-59).

3.) Given AU(m) and U+1(m) from the i-th iteration, the

right-hand side of Eq (2-63) is obtained along

with the updated tangential stiffness matrix.

4.) Eq (2-63) is used to solve for the primary

unknown, 6U(m).

5.) The update of the solution vector AUi+1 (M) is

calculated from Eq (2-62).

6.) U 1(0), U (1),.. ... ,U1(m) is updated for the i+l-th

iteration from Eq (2-58).
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7.) If

3 L L
(n+l I +

N+1 i e (2-64)
N rr(O))

(n+l1

then the algorithm goes back to step (1) for the

next time step, otherwise, it goes to step (3) for

the next iteration. 1 is the degree of freedom

number and L is the total number of dof's in the

finite element model, c is the given convergence

criterion.

The above procedures are terminated when tn is equal to the

given time duration.
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iIII. RESULTS/DISCUSSION

IThis section presents results of analysis done on
5 various problems to further evaluate the nonlinear dynamic

response of a composite cylindrical panel. A static snap-

3 through analysis was accomplished on an isotropic arch using

the Riks technique and compared to an analysis done by

Dennis (8) using a displacement control method. Also, a

static analysis of an arch is compared to work by Belytschko

and Glaum (3). Then the dynamic response of an isotropic

panel is compared to some present results by Clough and

Wilson (5). Finally, the majority of work presented shows

both a laminated composite arch and shell subjected to a

pre-buckling and a post-buckling load and the time dependent

behavior compared to a static analysis.

It should be noted that all finite element analysis

done in this research took advantage of using 1/4 panel

symmetry in order to reduce the number of elements and

refine the mesh size. The acceptability of using symmetry

with the SHELL code is discussed in reference (23) by Silva.

Simple Supported Isotropic Arch

A static snap-through analysis of a simple supported

circular arch was accomplished where the geometrical and

material quantities are shown below.
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i

f E = 10.0E6 psi

V =0

I R = 100 in. (radius)

5 h = 1.0 in. (thickness)

w = 1.0 in. (width)

3 0 = 53.13 deg

The mesh incorporated 46 identical elements modeling 1/4 of

I the arch with an aspect ratio of approximately four to one

3 as shown in Figs (3-1) and (3-2).

I P

J R=I O"

Figure 3-1. Simple Supported Isotropic Arch
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46 elements

I

I

Figure 3-2. Mesh for Isotropic Arch

m
m

i The loading is applied radially inward exactly at the

center of the arch. This results in a symmetric response

~where the center of the arch displaces only radially. The

-- solution by Dennis (8) was obtained by incrementing

- components of displacement and Fig 3-3 shows a comparison of

the center load displacement of the arch.

3

m
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B ~~~1200- QQDDNI
2QQQQ DENNIS (Displacement Control)

5 1000no Present Work (Riks Technique)
1000-

800

600

~0
w~yr 400:

,,o 2007
C-)

-200

- 400 . . . . . . . . . . . . . . . . . . . 5 .

0.0 10.0 20.0 30.0 40.0 50.0
Center Node Displacement (inches)

Figure 3-3. Force vs Displacement of Center Node, Simply
Supported Isotropic Arch

As can be seen, both analyses predict the same pre-

buckling load-displacement curve but the Riks algorithm

allows for a tracing of the equilibrium path to a new post-

buckling solution. The Riks method steps past singular

areas and allows uninterrupted tracing of the equilibrium

path.
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Clamped Isotropic Arch

A static collapse analysis of a clamped arch was

accomplished and compared to work done by Belytschko and

Glaum (3). Geometric and material quantities are:

E = 10.0E6 psi h = 0.1875 in

V = 0 w = 1.0 in

R = 113.114 in. 0 = 17.22 deg

The solution uses the fully nonlinear strain-displacement

5 relations of the SHELL code. Mesh sizes of 10 and 20

elements were used with almost identical results thus

convergence is assumed. Belytschko and Glaum reach

convergence for their fully modeled arch when the mesh size

I is decreased from 16 to 32 elements.

IP

I17.22 0

IR-113.1"

Figure 3-4. Clamped Isotropic Arch
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I

10 elements

.5"

I __ ____ ____ ____ ____ ___ .5w

20 elements

Figure 3-5. Mesh for Clamped Isotropic Arch

The loading is again applied radially inward at the center

of the arch which results in the center of the arch

displacing only radially. Fig (3-6) shows a comparison of

the two load-displacement curves.
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020-
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13coac Present Results
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

W (inches)

Figure 3-6. Load vs Displacement of Center Node,
Clamped Isotropic Arch

As can be seen, the initial load-up for each

formulation is approximately the same. The SHELL code

calculates a higher buckling load because it includes

nonlinear inplane displacement terms in the strain relations

that are not included by Belytschko and Glaum which also

does not include through the thickness shear terms. As the

displacement becomes large a greater effect of extensibility

in the SHELL element becomes present.
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5 Dynamic Response of Isotropic Cylindrical Shell

A three inch thick isotropic cylindrical shell (shown

in Fig 3-7) was subjected to a uniformly distributed half

sine wave impulsive loading with peak intensity of 90 psf as

shown in Fig (3-8).I

I - Diaphram

Diaphr am

40 Weight=901b/ft 2

R=50 ft E=3e6 psi

V=0

Figure 3-7. Isotropic Cylindrical Shell
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Z

0.0 0.5 1.03TIME (SEC)

Figure 3-8. Loading for
Isotropic Shell

Results are compared to existing results by Clough and

Wilson (5), where through the thickness parabolic shear

strain is not included. The two straight longitudinal edges

were assumed free and the two circular edges were assumed to

be supported on diaphragms. Material properties of E =

10.0E7 and v = 0 are used. As done previously, 1/4 panel

symmetry is taken advantage of. The time increment in each

load step was 0.025 sec which is approximately 1/25 the

first natural period of the shell.

The initial two analyses were accomplished without

considering the inertia force, i.e. setting the mass terms

to zero, thus they were effectively "static" analyses even
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though the displacement changed with time. Both geometric

linearity and non-linearity were considered by using SHELL's

capability to either include or exclude the nonlinear terms

in the strain-displacement relations. The results show good

agreement and are presented in Fig (3-9).

I

0.50
0___ Present Results (Linear)

- -- Present Results (Nonlinear)

00000 CLOUGH and WILSON (Linear)
0.40 0 0O OOO CLOUGH and WILSON Nonlinear)

0

10.30
S. 0 0\

0.20

1 0.10, o oo !~0.0 ..................
.0 0.20 6.'40 . '6 .'80 ' 1.0' i'.20

TIME (SEC)

I

IFigure 3-9. Displacement of Pt A vs Time, "Static"

I

I
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Two additional analyses were carried out in which the mass

density of the material is considered. The dynamic

deflections are larger than static, as would be expected.

Comparison with results from Clough and Wilson are shown in

Fig (3-10). The agreement of results is due to the fact

that transverse shear deformations are small for a shallow

thin isotropic arch and the loading is well below the

Icritical load which would cause snap-through.
I

0.8

1 0 _ Present results (linear)

0.6 0 --- Present results (nonlinear)
00000 CLOUGH and WILSON (linear)

O 00000 CLOUGH and WILSON (nonlinear)

0.4 0/ &I

2t~0.2

0.04

-0.2 %3 6

o 0 '

-0.4 . . \ .0.0 0.5 1.0 1.5 2.0
TIME (sec)

Figure 3-10. Displacement of Pt A vs Time, "Dynamic"
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5 Critical Time Step

Before any further results are presented, it is

3 important to discuss a parameter used in the numerical

3 analysis of non-linear dynamics called the critical time

step (At). Shell structures usually result in a so-called

S"stiff" system of differential equations where the highest
eigenvalues determine the numerical stability of the

explicit integration method (1). Therefore, a very small

time step must be used. If the chosen At exceeds the

critical value, a small error will be magnified with each

time step and computed displacement will grow very rapidly

and a numerical problem will be noticed after only a few

time steps. If At is less than the critical value an error

5will not accumulate and the solution obtained will be
reasonably accurate to the degree of tolerance used in the

numerical scheme. Katona and Zienkiewkz (12) suggest using

a At at most 1/12 times the first natural frequency of the

structure. Reference (1) proposes several different methods

for estimating the critical time step but concludes that

once an initial estimate is made trial and error will most

likely be necessary to further refine the critical time

step. Dinkler and Kroplin (9) also point out that errors

will grow uncontrollable unless a small time step is used

but they also do not offer any explicit methods for

determining At.
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Laminated Arch

In this section, both the static and dynamic analysis

I- of a simple supported laminated arch subjected to a center

point load are presented.

Material. The analysis is performed on laminate

constructed of high strength/low modulus Hercules AS4-3501-6

graphite epoxy with the following ply physical properties

and dimensions:

ply thickness = 0.005 in.

E, = 18.844E6 psi

E 2 = E 3 = 1.468E6 psi

G 12 = G 13 = 0.91E6 psi

G 23 = 0.45E6 psi

V 12 = 0.28

V2 1 = v 3 1 = 0.0218

mass density = 0.00015088 slugs/in
3

Arch Geometry. A ply lay up of [0 6/90 61 s is used

which has 24 plies and results in a total thickness of .12

inch. As shown in Fig (3-11) a radius of curvature of 12

in. along with an open angle 8 of 1 radian is used. Width

is the same order of thickness at .12 in. Mesh size for the

quarter-arch ranged from 1" x .06" to .25" x .06" as shown

in Fig (3-12).
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I

I

R =12"

Figure 3-11. Laminated Arch

3 ].06 in

eight elements

Figure 3-12. Mesh for Laminated Arch
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Static Analysis. The SHELL code was used to

investigate the static snap-through of the laminated arch.

I- The static load-deflection curve is illustrated in Fig (3-

13), which shows that the critical snapping load is

approximately 11.5 lb.

16.0IA B
12.0

-- 8.0

LU 4.0

0

0.0

-4.0

- 8 .0 ..... .... ..... .... .... ..... ...0.0 0.5 1.0 1.5 2.0 2.5 3.0

Transverse Displacement (w)

Figure 3-13. Load vs Displacement of Center Node,
Laminated Arch

I

If a load slightly greater than 11.5 lb were applied it

can be concluded from the curve that the shell should

collapse and the center node should displace approximately

2.7 in. Figure 3-14 shows a profile of the centerline of
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the arch at pt A and pt B from Fig (3-13) along with the

original configuration.

II

Original Profile
-- - Profile at Pt A
------ Profile at Pt B

Figure 3-14. Centerline of Laminated Arch

The arch instantaneously snaps through from point A to B and

is unstable until reaching point B where it is able to

resume sustaining a load. As can be seen from Fig (3-14)

the arch at point A is partly above and below its original

configuration. This suggests that the part above is in

compression and the part below is in tension. Once the arch

has fully collapsed it is entirely in tension. Each point

is below the original configuration.
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Dynamic Analysis. The same problem subjected to

dynamic loading is investigated. In the first case

investigated, the applied dynamic loading history is shown

in Fig (3-15), where the maximum load is smaller than the

static critical snapping load.

8 lb

I.0 OMOWC

Figure 3-15. Loading History
for Laminated Arch, Pre-
buckling Load

1 The response is a regular smooth periodic vibration as shown

in Fig (3-16). One curve shows a case where no damping is

allowed and thus the amplitude of each period is the same

and the other case shows that if damping is artificially

imposed the steady state solution will result. A time

increment of .0002 sec was used. Since the displacement
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3 versus time curve displays good periodicity and the loading

is less than critical where non-linear effects are not

dominant, this time step was judged to be acceptable. As

3 can be seen from the undamped case, approximately 17 points

are plotted for each period which satisfies Katona and

3 Zienkiewicz' (12) criteria of at least 12 per period. Thus,

I 0.30

0.25 6

0.20

I~~ (P1 ~9

0.10 oooo Undamped Case

Artificial Damping Imposed

0.05

0.000.000 0-065 . 60 0.015 0.020
TIME (sec)

Figure 3-16. Displacement vs Time of Center Node
for Laminated Arch, Pre-buckling Load

the natural frequency can be approximated at 294 Hz. An
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eigenvalue analysis done by the SHELL code calculates the

natural frequency at 499 Hz. Since the eigenvalue analysis

uses only the linear terms in the stiffness matrix one would

expect any calculations using the non-linear terms to

predict a lower natural frequency.

In the second case analyzed, a maximum load of 12 lb is

applied as shown in Fig (3-17), which is slightly greater

I than the critical snapping load of 11.5 lb.

I

i 12 lb

I/

I

I Figure 3-17. Loading History
for Laminated Arch, Post-

i buckling Load

I A time increment of 0.0002 sec is again used. During

this phase of the research it was discovered that the

percent convergence tolerance of the numerical technique is

I3-19I
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very critical when investigating dynamic behavior due to

loads above critical. Tolerances of 0.1 - 0.2 percent are

acceptable when the load is sub-critical but this tolerance

range causes errors to grow uncontrollable when the load is

above critical. It becomes obvious that the solution

"breaks down" before representing a realistic dynamic

pattern. Fig (3-18) shows a comparison of the time versus

Icenter node displacement history obtained using a percent
convergence tolerance of 0.1 and 0.0001. The 0.1 percent

curve "breaks down" shortly after reaching the peak

displacement. As can be seen error grows uncontrollably and

the curve no longer represents a realistic *7olution. The

0.0001 percent curve calculates two realiztic vibration

periods before it was no longer able to converge to the

desired tolerance.
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1 5.0

ooooo 0.0001 % ToleranceS4.0 0. 1 Tolerance

I _ 2.0I
S1.0

V)

> 0.0
(n

I-1.0

- 2 . 0 ' . . . . . .. .. . . . . . . . . . . .. . . . . . . . . I0.02 0 0.062 0.004 0.006 6 ... 0.010
TIME (sec)

Figure 3-18. Center Node Displacement vs Time,
Laminated Arch

Fig (3-19) shows the time vs displacement history for

both an undamped and artificially damped case using the

percent convergence tolerance of 0.0001. The damping

coefficient imposed is 0.1. Because the non-linear parts of

the strain-displacement relations are dominant and the

solution technique is numerical, a pure sinusoidal curve is

not seen but it is approximated. The reason as to why the

two cases do not average the same displacement is as yet

unresolved. As can also be seen, the initial curve leading

up to the maximum displacement is concave up. This
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demonstrates that the nonlinear kinematics are producing a

more flexible arch response relative to linear relations.

3.5

I A
3.0

I 2.5 B

I 1.5
__ped

0.000 Undamped

51.0 X Damped
0.5

0.0 W. ... .
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

TIME (sec)

Figure 3-19. Displacement vs Time of Center Node,
Laminated Arch, Post-buckling Load

Fig (3-20) shows a profile of the arch centerline at points

A, B, and C from Fig (3-19). As can be seen, the centerline

at point B, which is at approximately the average amplitude,

closely resembles that from Fig (3-14). However, it is

unclear why the displacement at point B, which is at the

average amplitude for the undamped case, is 2.5 inches while

the static curve suggests a collapse displacement of 2.7

inches.
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I
I 0

I

Figure 3-20. Profile of Laminated Arch Centerline

Fig (3-20) also shows that only the middle third of the arch

appears to be in vibration. There are two counter flecture

points approximately 1/3 in from each boundary where the

bending moment remains near zero. Also shown is a profile

of the arch corresponding to point X on Fig (3-19) which is

immediately after the onset of the maximum load. This

profile closely resembles the pre-buckling profile from Fig

(3-14). This profile does not appear immediately after the

onset of the critical load because the dynamic calculations

take into account inertia forces but it does indicate the

start of the snapping phenomena.
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Laminated Cylindrical Shell

The final case investigated is that of a laminated

cylindrical shell subject to a center point load. The

material studied is the same as the laminated arch and

presented again below:

ply thickness = 0.005 in.

El = 18.844 x 106 psi

E2 = E3 = 1.468 x 106 psi

G12 = G13 = 0.91 x 106 psi

G23 = 0.45 x 106 psi

V 12 = 0.26

V2 1 = V31 = 0.0218

mass density = 0.00015088 slug/in
3

Geometry and Boundary Conditions. The same ply lay-up

as the arch was used of [0 6 9 06]s resulting in an overall

shell thickness of 0.12 in. Again a radius of curvature of

12 inches is used along with an open angle 0 of 1 radian as

shown in Fig (3-21). A length of 18 inches is used so

results can be compared to Silva (23) who ran the same

static analysis on the SHELL code. Both straight edges were

allowed to be simply supported while both curved edges were

allowed to be free. This combination of geometry, ply-

layup, and boundary conditicns were chosen because it was

shown by Silva to fully collapse. "Full" collapse is said
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to occur when the free ends also turn under which implies

that every point in the shell has displaced below its

original configuration.

18" straight edgeR (pinned)

/-12'

e- 1 rad

Figure 3-21. Laminated Shell Geometry

Finite Element Mesh. As seen in Fig (3-21), Silva uses an

88 element 1/4 panel mesh to achieve a static load versus

displacement curve. In an effort to reduce the necessary

computer run time, particularly for the dynamic analysis,

the present work reduces the number of elements to a 49

element mesh. Although the number of degrees of freedom in

this mesh does not fall within the convergence criteria set

by Silva (23), it does fall within 5 percent of his criteria

based on peak load. Silva uses elements ranging in size
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from 1"xl" to "x " while the present work uses elements

that range in size from 2"xl" to "x ". It should be noted

that in the area of point load application the element size

for both meshes is "x ".

IP

IP

IP

Present Mesh -_!

Silva's Mesh

Figure 3-22. Mesh Comparison for Laminated Shell
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Static Analysis. Fig (3-23) shows the static load

versus displacement curves for both Silva's analysis and the

present work. The initial load up and critical load are

-- approximately the same but with less finite elements the

post buckling behavior is slightly more difficult to track.

The critical snapping load is calculated to be approximately

2800 lb. The initial post buckling deflection of the center

node is approximately 2.7 in.

I ~~4000j ___00000 Silva

0 0000o o Present results
3000

n 2000

0 1000

I
I 0.

-10001
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Transverse Displacement w (inches)

Figure 3-23. Load vs Displacement, Cylindrical Shell
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Dynamic Analysis. The same problem subjected to

dynamic loading is investigated. For the first analysis,

the applied dynamic loading history, shown in Fig (3-23), is

smaller than the static critical snapping load. The

response, as shown in Fig (3-24), is periodic, but not

2000 lb

0.002 0.02 sac

Figure 3-24. Loading History
for Cylindrical Shell,
Pre-critical Load

purely sinusoidal. The fact that the curve is not purely

* sinusoidal can perhaps be accounted for due to the large

number of calculations performed, the non-linearity of the

I strain-displacement equations, the precision of the computer

code (double precision is used) and the round-off error of

the computer. The average displacement for each period does
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however, match that for the static load vs deflection curve

of Fig (3-23) which indicates that steady state has been

reached.

A time step of 0.0002 seconds is presented however the

results were the same when a time step of 0.0001 sec was

used thus convergence is assumed. By approximating the time

between peaks, a natural frequency of 225 Hz is estimated.

Again an eigen value analysis predicts a higher natural

frequency of 505 Hz.

I 1.00

.20.80

c0.60

E

0-0.40

>0.20
C
0

0080'6 . . ...... 6.6 4 ..... 61Y... ........ .........O.. "0.00'64''0.008 0.012 0.016 0.020

TIME (sec)

Figure 3-25. Displacement vs Time of Center Node,
Cylindrical Shell, Pre-rritical Loading
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In the second analysis, the applied dynamic loadinj history

is greater than the static critical snapping load as shown

in Fig (3-26). Time steps of 0.0002 sec and 0.0001. sec were

used. A percent tolerance of 0.001 was imposed.

3000 lb

Figure 3-26. Load History for
Cylindrical Shell, Post-
Buckling Load

The vibration response of the shell is shown in Fig (3-27).

The curve representing the time step of 0.0002 sec "breaks

* down" after reaching the maximum displacement and is not

able to show any reasonable periodicity. By cutting the

i time step in half to 0.0001 seconds the curve is able to

show approximately one and one-half cycles before it also

reaches a point where the error goes uncontrollable.

3-30



However, during the one and one-half periods the average

amplitude of 2.7 inches matches that of the static load

I displacement curve of Fig (3-23).

i

i 3.5

I 3.0I
2.5

2.0
.c

;1.5

1.0

I
0.5 ooooo Time Step = 0.0001 secI 00000oTime Step = 0.0002 sec

0.0
0.000 0.002 0.004 0.006 0.008TIME (sec)

I Figure 3-27. Displacement vs Time of Center Node,
Cylindrical Shell, Post-buckling LoadI

At this point it is as yet unresolved as to whether
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I
I decreasing the time step even further would yield even more

realistic results or the limits of the numerical precision

I of the computer have been reached.

I
!

Ii
Ii

Ii
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IV. CONCLUSIONS/RECOMMENDATIONS

Conclusions

The instability of thin laminated cylindrical shells

acted upon by transverse loads is clearly a dynamic

jphenomena for which analytical prediction and physical
reality have yet to be fully reconciled. Some authors

Iprefer to investigate the post buckling state using a static
analysis while others argue that only a dynamic analysis is

able to cope with the difficult phenomena of transient

Imultimode buckling between the pre- and post-buckling range.
It is apparent that this argument becomes very significant

1when instability of a shell is considered with transverse
Iloading. It is also a major characteristic when one

investigates cylindrical panels acting under axial

compression. With the SHELL code, it is possible to use the

same set of constitutive laws, strain-displacement

Irelations, and finite element formulations to do both a
static and dynamic analysis on a particular shell. The

resulting comparison gives insight into the post buckling

behavior of shells and their ability to sustain a load after

collapse. An exclusively static analysis is a useful tool

for predicting the immediate post buckling state in a dead

load situation. However, such an analysis considers only

static equilibrium states. Beyond the critical load point

I4-1
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it is concerned with equilibrium states which may or may not

occur as the shell dynamically seeks another configuration

in which it can resume supporting a load. On the other

hand, a dynamic analysis is not concerned with these

artificial equilibrium states and can trace the behavior of

the shell all the way through the buckling process. It

should be noted though, that the dynamic analysis requires

significantly more computer time than a static analysis. In

a numerical scheme, the time step must be small enough to

avoid numerical instability. It has been shown that in

using the SHELL code, the response of a shell resulting from

a dynamic steady state analysis subjected to a step load,

I matches the displacement on the snap through load versus

displacement curve.

Recommendations

There are many parameters involving the use of the

SHELL dynamic code which lend themselves as areas of further

I study. The effect of boundary conditions, other than simply

supported, require further study. For example, a shell that

is clamped on the edges will respond differently and is

perhaps more common in aircraft structures. Also, various

load conditions such as line and distributed loads should be

I investigated. An impulse load can also be used other then a

step load. The use of a damping factor requires further

study particularly in trying to get a physical meaning of

I 4-2
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the phenomena. Perhaps the most important area requiring

further study is that of the numerical integration scheme

and its inherent numerical instability. More investigation

into the tolerance and the critical time step are needed.

Also, the use of different parameters for the beta-m

integration technique might cause convergence to a solution

at a faster rate.

I
I
I

I
I
I
I
i
I
I
1 4-3

i
I



Bibliography

1. Almroth, B.L., F.A. Brogan, and G.M. Stanley, User
Instructions for STAGSC-I, Volume II, LMSC-DG33873, pp 6-32
- 6-37, January, 1983.

2. Bathe, K.J. and L.W. Ho. "Some Results in the Analysis
of Thin Shell Structures," Nonlinear Finite Element Analysis
in Structural Mechanics, ed. W. Wunderlich, E. Stein, and K.
J. Bath, 1981, Springer-Verlag Berlin, Heidelberg, NY, pp.
122-150.

3. Belytschko, T. and L.W. Gluam,"Applications of Higher
Order Corotational Stretch Theories to Nonlinear Finite
Element Analysis," Computers and Structures, Vol 10, 175-

I 182, 1979.

4. Chung, S. and 0. Widera. "A Theory for Non-Homogeneous
Anisotropic Cylindrical Shells," Journal of Composite
Materials, Vol 6, 14-30, 1963.

5. Clough, R.W. and E.L. Wilson. "Dynamic Finite Element
Analysis of Arbitrary Thin Shells, " Computers and
Structures, Vol 1, 33-56, 1971.

6. Cook, R.D., D.S. Malkus, and M.E. Plesha. Concepts and
Applications of Finite Element Analysis, John Wiley and
Sons, 1989.

7. Crisfield, M.A. "A Fast Incremental/Iterative Procedure
That Handles 'Snap-Through'," Computers and Structures, Vol
13, 55-62, 1981.

I 8. Dennis, S.T. Large Displacement and Rotational
Formulation for Laminated Cylindrical Shells Including
Parabolic Transverse Shear, D.S. Thesis AFIT/DS/AA/88-1.
School of Engineering, Air Force Institute of Technology
(AU), Wright Patterson AFB, OH, 1988.

9. Dinkler, D. and B. Kroplin. "Dynamic Versus Static
Buckling Analysis of Thin Walled Shell Structures," Finite
Element Methods for Plate and Shell Structures, Volume 2:
Formulations and Algorithms, ed. E. Hinton and T.J.R.
Hughes, Pineridge Press International, 1986, pp. 229-251.

10. Donnell, L.H. Stability of Thin-Walled Tubes Under
Torsion. NACA Report 479, 1933.

IR-1

I
I



11. Kapania, R.K., and Raciti, S. "Recent Advances in
Analysis of Laminated Beams and Plates, Part I: Shear
Effects and Buckling," AIAA Journal, Vol 27, No 7, July
1989.

12. Katona, M.G., and Zienkiewicz, O.C. "A Unified Set of
Single Step Algorithms, Part 3: The Beta-m Method, a
Generalization of the Newmark Scheme," International
Journal for Numerical Methods in Engineering, Vol. 21, 1345-
1359, 1985.

13. Nayfeh, A.H., and D.T.Mook Nonlinear Oscillations,
Wiley, 1979

14. Tsai, C.T. and Palazotto, A.N. "On the Finite Element
Analysis of Nonlinear Vibration for Cylindrical Shells with
High-order Shear Deformation Theory," accepted for
publication in International Journal of Nonlinear Mechanics.

15. Ramm, E. "Strategies for Tracing the Nonlinear Response
Near Limit Points," Nonlinear Finite Element Analysis in
Structural Mechanics, ed. W. Wunderlich, E. Stein, and K.J.
Bathe, 1981, Springer - Verlag Berlin, Heidelberg, NY, pp.
63-89.

16. Reddy, J.N. Energy and Variational Methods in Applied
Mechanics with an Introduction to the Finite Element Method,
Wiley, 1984.

17. Reddy, J.N. and C.F. Liu. "A Higher Order Shear
Deformation Theory of Laminated Composite Shells,"
International Journal of Engineering Science, Vol 23, No 3,
319-330, 1985.

18. Riks, E. "The Application of Newton's Method to
Nonlinear Theories of Solids," Journal of Applied Mechanics
Vol 39, 1060-1065, 1972.

19. Riks, E. "An Incremental A ,._oach to the Solution of
Snapping and Buckling Problems," International Journal of
Solids and Structures, Vol 15, 529-551, 1979.

20. Saada, A.S. Elasticity Theory and Applications,
Pergamon Press, 1974.

21. Sabir, A.B. and A.C. Lock. "The Application of Finite
Elements to the Large Deflection Geometrically Non-linear
Behavior of Cylindrical Shells," Variational Methods in
Engineering, ed. C. Brebbia and H. Tottenham, S,ithampton
University Press, 1973, pp. 7/66-7/75.

R-2



22. Sanders,J.L. An Improved First Approximation Theory for
Thin Shells. NASA TR-24, 1959.

23. Silva, K.J. Finite Element Investigation of a
Composite Cylindrical Shell Under Transverse Load with
Through Thickness Shear and Snapping. MS Thesis,
AFIT/GAE/ENY/89D-35. School of Engineering, Air Force
Institute of Technology (AU), Wright Patterson AFB, OH,
1989.

24. Simmons, J.G. "A Set of Simple, Accurat Equations for
Circular Cylindrical Shells," International Journal Of
Solids and Structures, Vol. 2, 522-541 (1966)

25. Schimmels, S.A. Investigation of Collapse
Characteristics of Cylindrical Composite Panels with Large
Cutouts. MS Thesis, AFIT/GAE/ENY/89D-33. School of
Engineering, Air Force Institute of Technology (AU), Wright
Patterson AFB, OH, 1989

26. Tsai, C.T. and A.N. Palazotto. "A Modified Riks
Approach to Composite Shell Snapping Using Higher Order
SLear Deformation Theory," Computers and Structures, Vol
35, No 3, 221-226, 1990.

27. Wempner, G.A. "Discreet Approximations Related to
Nonlinear Theories of Solids," International Journal of
Solids and Structures, Vol 7, 1581-1599, 1971.

R-3



Major Walter W. Taylor Jr.

.% He graduated from high school in

Braintree, Massachusetts, in 1975 and accepted an

appointment to the United States Air Force Academy in

Colorado. After earning his Bachelor of Science Degree in

Engineering Mechanics in May 1979 he served the Air Force as

an aeronautical engineer at the Air Force Weapons

Laboratory, Kirtland AFB, New Mexico. After graduating from

USAF pilot training at Reese AFB, Texas in August 1983 Major

Taylor served as a C-141B pilot at McGuire AFB, New Jersey.

Major Taylor entered the Air Force Institute of Technology,

School of Engineering in May 1989.

V-1



i

December 1990 Master's Thesis

I FINITE ELEMENT INVESTIGATION INTO
THE DYNAMIC INSTABILITY CHARACTERISTICS OF
LAMINATED COMPOSITE PANELS

Walter W. Taylor Jr., Major, USAFI

3 Air Force Institute of Technology AFIT/GAE/ENY/90D-28
WPAFB OH 45433-6583

I
Spencer T. Wu
AFOSR/NA
Bolling AFB, Washington DC 20332-6448

I
I

I Approved for public release; distribution
unlimited

IDynamic instability of a laminated composite panel
subjected to a transverse load is studied. Up to cubic variations in
the thickness coordinate are included in the inplane displacement
field, and only the constant component is kept in the transverse
displacement. The transverse shear strains retain only linear
displacement terms and vary parabolically through the thickness. The
complete quadratic displacement functions are included in the inplane
strains. A 36 degree of freedom shell element is used to obtain numer-
ical results. The static snap through load vs displacement curve, as
well as the critical collapse load, is examined by invoking the Riks
technique along with the Newton-Raphson iteration scheme. The beta-m
time marching integration method is employed to evaluate a dynamic
response. Two step loads, with the step magnitude slightly below and
above the critical collapse load, are introduced in the dynamicanalysis. The response resulting from the dynamic analysis matches the
displacement on the static load vs displacement curve.x
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